More titles to consider

Shopping Cart

You're getting the VIP treatment!

With the purchase of Kobo VIP Membership, you're getting 10% off and 2x Kobo Super Points on eligible items.

Item(s) unavailable for purchase
Please review your cart. You can remove the unavailable item(s) now or we'll automatically remove it at Checkout.


Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.

Ratings and Reviews

Overall rating

No ratings yet
5 Stars 4 Stars 3 Stars 2 Stars 1 Stars
0 0 0 0 0

Be the first to rate and review this book!

You've already shared your review for this item. Thanks!

We are currently reviewing your submission. Thanks!


You can read this item using any of the following Kobo apps and devices:

  • IOS