Shopping Cart
You're getting the VIP treatment!
With the purchase of Kobo VIP Membership, you're getting 10% off and 2x Kobo Super Points on eligible items.
itemsitem
With the purchase of Kobo VIP Membership, you're getting 10% off and 2x Kobo Super Points on eligible items.
Save $15.71 (20% off) and earn Kobo Super Points!
You'll see how many points you'll earn before checking out. We'll award them after completing your purchase.
Or, get it for 32400 Kobo Super Points!
See if you have enough points for this eBook. Sign in
This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed.
Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.
You've already shared your review for this item. Thanks!
We are currently reviewing your submission. Thanks!
Hypoelliptic Laplacian and Orbital Integrals (AM-177)
by Jean-Michel Bismut
Annals of Mathematics Studies
Tell readers what you thought by rating and reviewing this book.
Please make sure to choose a rating
How to write a great review
(0) 50 characters minimum
The review must be at least 50 characters long.
The title should be at least 4 characters long.
Your display name should be at least 2 characters long.
At Kobo, we try to ensure that published reviews do not contain rude or profane language, spoilers, or any of our reviewer's personal information.
Would you like us to take another look at this review?
You've successfully reported this review. We appreciate your feedback.
Hypoelliptic Laplacian and Orbital Integrals (AM-177)
by Jean-Michel Bismut
Annals of Mathematics Studies
You submitted the following rating and review. We'll publish them on our site once we've reviewed them.
by on September 26, 2016
You can read this item using any of the following Kobo apps and devices: