Shopping Cart
You're getting the VIP treatment!
With the purchase of Kobo VIP Membership, you're getting 10% off and 2x Kobo Super Points on eligible items.
itemsitem
With the purchase of Kobo VIP Membership, you're getting 10% off and 2x Kobo Super Points on eligible items.
Save $15.71 (20% off) and earn Kobo Super Points!
You'll see how many points you'll earn before checking out. We'll award them after completing your purchase.
Or, get it for 32400 Kobo Super Points!
See if you have enough points for this eBook. Sign in
Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.
Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.
You can read this item using any of the following Kobo apps and devices: