More titles to consider

Shopping Cart

You're getting the VIP treatment!

With the purchase of Kobo VIP Membership, you're getting 10% off and 2x Kobo Super Points on eligible items.

Item(s) unavailable for purchase
Please review your cart. You can remove the unavailable item(s) now or we'll automatically remove it at Checkout.


Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces.

The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a space. From this, the two extension problems were spawned.

With the classical dimension theory as a model, the inductive, covering and basic aspects of the dimension functions are investigated in this volume, resulting in extensions of the sum, subspace and decomposition theorems and theorems about mappings into spheres. Presented are examples, counterexamples, open problems and solutions of the original and modified compactification problems.

Ratings and Reviews

Overall rating

No ratings yet
5 Stars 4 Stars 3 Stars 2 Stars 1 Stars
0 0 0 0 0

Be the first to rate and review this book!

You've already shared your review for this item. Thanks!

We are currently reviewing your submission. Thanks!


You can read this item using any of the following Kobo apps and devices: