Shopping Cart
itemsitem
First Course in Mathematical Logic
Starting with symbolizing sentences and sentential connectives, this work proceeds to the rules of logical inference and sentential derivation, examines the concepts of truth and validity, and presents a series of truth tables. Subsequent topics include terms, predicates, and universal quantifiers; universal specification and laws of identity; axioms for addition; and universal generalization.Wiley Series in Probability and Statistics (Book #939)
Praise for the Third Edition "It is, as far as I'm concerned, among the best books in math ever written....if you are a mathematician and want to have the top reference in probability, this is it." (Amazon.com, January 2006) A complete and comprehensive classic in probability and measure theory Probability and Measure, Anniversary Edition by Patrick Billingsley celebrates the achievements andThe Complete Guide to the Incompleteness Theorem
Berto’s highly readable and lucid guide introduces students and the interested reader to Gödel’s celebrated Incompleteness Theorem, and discusses some of the most famous - and infamous - claims arising from Gödel's arguments. Offers a clear understanding of this difficult subject by presenting each of the key steps of the Theorem in separate chapters Discusses interpretations of the Theorem madeSpecial Functions for Scientists and Engineers
Clear and comprehensive, this text provides undergraduates with a straightforward guide to special functions. It is equally suitable as a reference volume for professionals, and readers need no higher level of mathematical knowledge beyond elementary calculus. Topics include the solution of second-order differential equations in terms of power series; gamma and beta functions; LegendreIntroduction to Vector and Tensor Analysis
A broad introductory treatment, this volume examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, fundamental notions in n-space, Riemannian geometry, algebraic properties of the curvature tensor, and more. 1963 edition.