Shopping Cart
itemsitem
Probabilities and Potential, C
Potential Theory for Discrete and Continuous Semigroups
North-Holland Mathematics Studies
This third volume of the monograph examines potential theory. The first chapter develops potential theory with respect to a single kernel (or discrete time semigroup). All the essential ideas of the theory are presented: excessive functions, reductions, sweeping, maximum principle. The second chapter begins with a study of the notion of reduction in the most general situation possible - the `Probabilities and Potential, C
Potential Theory for Discrete and Continuous Semigroups
North-Holland Mathematics Studies
This third volume of the monograph examines potential theory. The first chapter develops potential theory with respect to a single kernel (or discrete time semigroup). All the essential ideas of the theory are presented: excessive functions, reductions, sweeping, maximum principle. The second chapter begins with a study of the notion of reduction in the most general situation possible - the `Inverse M-Matrices and Ultrametric Matrices
Lecture Notes in Mathematics (Book #2118)
The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the ChoquetRecent Progress in General Topology III
The book presents surveys describing recent developments in most of the primary subfields of General Topology, and its applications to Algebra and Analysis during the last decade, following the previous editions (North Holland, 1992 and 2002). The book was prepared in connection with the Prague Topological Symposium, held in 2011. During the last 10 years the focus in General Topology changed andEnumerative Combinatorics: Volume 2
Cambridge Studies in Advanced Mathematics (Book #62)
This second volume of a two-volume basic introduction to enumerative combinatorics covers the composition of generating functions, trees, algebraic generating functions, D-finite generating functions, noncommutative generating functions, and symmetric functions. The chapter on symmetric functions provides the only available treatment of this subject suitable for an introductory graduate course onGraduate Texts in Mathematics (Book #225)
This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition hasDiffusions, Markov Processes, and Martingales: Volume 1, Foundations
Cambridge Mathematical Library
Now available in paperback, this celebrated book has been prepared with readers' needs in mind, remaining a systematic guide to a large part of the modern theory of Probability, whilst retaining its vitality. The authors' aim is to present the subject of Brownian motion not as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter doesAn Introduction to Homological Algebra
Cambridge Studies in Advanced Mathematics (Book #38)
The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first