Shopping Cart
itemsitem
$80.99
Graduate Texts in Mathematics (Book #225)
This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has$134.09
Multiple Dirichlet Series, L-functions and Automorphic Forms
Progress in Mathematics (Book #300)
Multiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics. As such, it represents a new way in which areas including number theory, combinatorics, statistical$41.99
Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory (AM-175)
Type A Combinatorial Theory (AM-175)
Annals of Mathematics Studies (Book #175)
Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be$47.59
Automorphic Forms and Representations
Cambridge Studies in Advanced Mathematics (Book #55)
Intermediate in level between an advanced textbook and a monograph, this book covers both the classical and representation theoretic views of automorphic forms in a style which is accessible to graduate students entering the field. The treatment is based on complete proofs, which reveal the uniqueness principles underlying the basic constructions. The book features extensive foundational material$148.99
Convergence of Probability Measures
Wiley Series in Probability and Statistics
A new look at weak-convergence methods in metric spaces-from a master of probability theory In this new edition, Patrick Billingsley updates his classic work Convergence of Probability Measures to reflect developments of the past thirty years. Widely known for his straightforward approach and reader-friendly style, Dr. Billingsley presents a clear, precise, up-to-date account of probability limit$134.09
Geometric Aspects of General Topology
Springer Monographs in Mathematics
This book is designed for graduate students to acquire knowledge of dimension theory, ANR theory (theory of retracts), and related topics. These two theories are connected with various fields in geometric topology and in general topology as well. Hence, for students who wish to research subjects in general and geometric topology, understanding these theories will be valuable. Many proofs are$62.99
Calculus on Normed Vector Spaces
This book serves as an introduction to calculus on normed vector spaces at a higher undergraduate or beginning graduate level. The prerequisites include basic calculus and linear algebra, as well as a certain mathematical maturity. All the important topology and functional analysis topics are introduced where necessary.In its attempt to show how calculus on normed vector spaces extends the basic$61.19
Algebraic Geometry and Statistical Learning Theory
Cambridge Monographs on Applied and Computational Mathematics (Book #25)
Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity$260.09
Functional Equations in Mathematical Analysis
Springer Optimization and Its Applications (Book #52)
The stability problem for approximate homomorphisms, or the Ulam stability problem, was posed by S. M. Ulam in the year 1941. The solution of this problem for various classes of equations is an expanding area of research. In particular, the pursuit of solutions to the Hyers-Ulam and Hyers-Ulam-Rassias stability problems for sets of functional equations and ineqalities has led to an outpouring of$57.79
Diffusions, Markov Processes, and Martingales: Volume 1, Foundations
Cambridge Mathematical Library
Now available in paperback, this celebrated book has been prepared with readers' needs in mind, remaining a systematic guide to a large part of the modern theory of Probability, whilst retaining its vitality. The authors' aim is to present the subject of Brownian motion not as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter does$74.79
The Principle of the Common Cause
The common cause principle says that every correlation is either due to a direct causal effect linking the correlated entities or is brought about by a third factor, a so-called common cause. The principle is of central importance in the philosophy of science, especially in causal explanation, causal modeling and in the foundations of quantum physics. Written for philosophers of science,