Shopping Cart
itemsitem
The History of the Calculus and Its Conceptual Development
Fluent description of the development of both the integral and differential calculus. Early beginnings in antiquity, medieval contributions, and a century of anticipation lead up to a consideration of Newton and Leibniz, the period of indecison that followed them, and the final rigorous formulation that we know today.The Development of Mathematics Throughout the Centuries
A Brief History in a Cultural Context
Throughout the book, readers take a journey throughout time and observe how people around the world have understood these patterns of quantity, structure, and dimension around them. The Development of Mathematics Throughout the Centuries: A Brief History in a Cultural Contex provides a brief overview of the history of mathematics in a very straightforward and understandable manner and alsoSummary of Carl Boyer's History of the Calculus and its Conceptual Development
In this 309 page book, Carl Boyer takes the reader from the origins of mathematics, where soon geometry and arithmetic became widely used to measure "static" dimensions, to the gestation of calculus as the basic tool to measure "dynamic" events. This required the introduction of the graphic representation of the equations that represent physical events, and a fascinating debate about the rigorousThe Kingdom of Infinite Number
Just as bird guides help watchers tell birds apart by their color, songs, and behavior, The Kingdom of Infinite Number is the perfect handbook for identifying numbers in their native habitat. Taking a field guide-like approach, it offers a fresh way of looking at individual numbers and the properties that make them unique, which are also the properties essential for mental computation. The resultThe Britannica Guide to The History of Mathematics
The field of mathematics today represents an ongoing global effort, spanning both countries and centuries. Through this in-depth narrative, students will learn how major mathematical concepts were first derived, as well as how they evolved with the advent of later thinkers shedding new light on various applications. Everything from Euclidean geometry to the philosophy of mathematics isThe Concept of a Riemann Surface
This classic on the general history of functions was written by one of the twentieth century's best-known mathematicians. Hermann Weyl, who worked with Einstein at Princeton, combined function theory and geometry in this high-level landmark work, forming a new branch of mathematics and the basis of the modern approach to analysis, geometry, and topology.The author intended this book not only toThe Elements of Non-Euclidean Geometry
Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations. It features the relation between parataxy and parallelism, the absolute measure, the pseudosphere, and Gauss' proof of the defect-area theorem. 1914 edition. Includes 133