Shopping Cart
itemsitem
An Introduction to Mathematical Proofs
The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs provides basic logic of mathematical proofs and shows how mathematical proofs work. It offers techniques for both reading and writing proofs. The second chapter of the book discusses the techniques in proving if/then statements by contrapositive and proofing by contradiction. It also includes the negation statement, and/or. ItAn Introduction to Mathematical Proofs
The Nuts and Bolts of Proof instructs students on the basic logic of mathematical proofs, showing how and why proofs of mathematical statements work. It provides them with techniques they can use to gain an inside view of the subject, reach other results, remember results more easily, or rederive them if the results are forgotten.A flow chart graphically demonstrates the basic steps in theAn Introduction to Mathematical Proofs
The Nuts and Bolts of Proof instructs students on the basic logic of mathematical proofs, showing how and why proofs of mathematical statements work. It provides them with techniques they can use to gain an inside view of the subject, reach other results, remember results more easily, or rederive them if the results are forgotten.A flow chart graphically demonstrates the basic steps in theMathematical Foundations of Information Theory
The first comprehensive introduction to information theory, this text explores the work begun by Shannon and continued by McMillan, Feinstein, and Khinchin. Its rigorous treatment addresses the entropy concept in probability theory and fundamental theorems as well as ergodic sources, the martingale concept, anticipation and memory, and other subjects. 1957 edition.Basic Concepts in Modern Mathematics
An in-depth overview of some of the most readily applicable essentials of modern mathematics, this concise volume is geared toward undergraduates of all backgrounds as well as future math majors. Topics include the natural numbers; sets, variables, and statement forms; mappings and operations; groups; relations and partitions; integers; and rational and real numbers. 1961 edition.A Beginner's Guide to Mathematical Logic
Combining stories of great philosophers, quotations, and riddles with the fundamentals of mathematical logic, this new textbook for first courses in mathematical logic was written by the subject's creative master. Raymond Smullyan offers clear, incremental presentations of difficult logic concepts with creative explanations and unique problems related to proofs, propositional logic and first-order