More titles to consider

Shopping Cart

You're getting the VIP treatment!

With the purchase of Kobo VIP Membership, you're getting 10% off and 2x Kobo Super Points on eligible items.

Item(s) unavailable for purchase
Please review your cart. You can remove the unavailable item(s) now or we'll automatically remove it at Checkout.


This thesis introduces a new integrated algorithm for the detection of lane-level irregular driving. To date, there has been very little improvement in the ability to detect lane level irregular driving styles, mainly due to a lack of high performance positioning techniques and suitable driving pattern recognition algorithms. The algorithm combines data from the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and lane information using advanced filtering methods. The vehicle state within a lane is estimated using a Particle Filter (PF) and an Extended Kalman Filter (EKF). The state information is then used within a novel Fuzzy Inference System (FIS) based algorithm to detect different types of irregular driving. Simulation and field trial results are used to demonstrate the accuracy and reliability of the proposed irregular driving detection method.

Ratings and Reviews

Overall rating

No ratings yet
5 Stars 4 Stars 3 Stars 2 Stars 1 Stars
0 0 0 0 0

Be the first to rate and review this book!

You've already shared your review for this item. Thanks!

We are currently reviewing your submission. Thanks!


You can read this item using any of the following Kobo apps and devices:

  • IOS